6.4. SQLi attack detection¶
6.4.1. Introduction¶
This tutorial shows how tu use Haka in order to detect SQL injection attacks (SQLi). SQLi are common web attacks that consist in injecting SQL commands through http requests leading to sensitive data disclosure or authentication scheme bypass.
Note that our goal is not to block 100% of SQLi attacks (with 0% false-positive rate) but to show how to build iteratively an sqli filtering policy thanks to Haka capabilities.
6.4.2. How-to¶
This tutorial introduces a set of Haka script files located at <haka_install_path>/share/haka/sample/sqli and which could be ran using the hakapcap tool:
$ cd <haka_install_path>/share/haka/sample/qli
$ hakapcap sqli-sample.lua sqli.pcap
All the samples are self-documented.
6.4.3. Writing http rules¶
To write http rules, we need first to load the ipv4, tcp and http dissectors. This is the purpose of the httpconfig.lua which is required by all the samples given in this tutorial.
------------------------------------
-- Loading dissectors
------------------------------------
require('protocol/ipv4')
require('protocol/tcp')
httplib = require('protocol/http')
------------------------------------
-- Setting next dissector
------------------------------------
httplib.install_tcp_rule(80)
-----------------------------------
-- Dumping request info
-----------------------------------
function dump_request(request)
haka.log("receiving http request")
local uri = request.uri
haka.log(" uri: %s", uri)
local cookies = request.headers['Cookie']
if cookies then
haka.log(" cookies: %s", cookies)
end
end
The file defines also a useful function which logs some info about http request : uri and Cookie header.
6.4.4. My first naive rule¶
The first example presents a naive rule which checks some malicious patterns against the whole uri. A score is updated whenever an sqli keywords is found (select, update, etc.). An alert is raised if the score exceeds a predefined threshold.
require('httpconfig')
------------------------------------
-- Malicious Patterns
------------------------------------
local keywords = {
'select', 'insert', 'update', 'delete', 'union'
}
------------------------------------
-- SQLi Naive Rule
------------------------------------
haka.rule{
-- Evaluation applies on upcoming requests
hook = httplib.events.request,
eval = function (http, request)
dump_request(request)
local score = 0
-- Http fields (uri, headers) are available through 'request' parameter
local uri = request.uri
for _, key in ipairs(keywords) do
-- Check the whole uri against the list of malicious keywords
if uri:find(key) then
-- Update the score
score = score + 4
end
end
if score >= 8 then
-- Raise an alert if the score exceeds a fixed threshold (compact format)
haka.alert{
description = string.format("SQLi attack detected with score %d", score),
severity = 'high',
confidence = 'low',
}
http:drop()
end
end
}
6.4.5. Anti-evasion¶
It is trivial to bypass the above rule with slight modifications on uri. For instance hiding a select keyword using comments (e.g. sel/*something*/ect) or simply using uppercase letters will bypass our naive rule. The script file sqli-decode.lua improves detection by applying decoding functions on uri. This functions are defined in httpdecode.lua file.
require('httpconfig')
require('httpdecode')
------------------------------------
-- Malicious Patterns
------------------------------------
local keywords = {
'select', 'insert', 'update', 'delete', 'union'
}
-- Still naive rule
haka.rule{
hook = httplib.events.request,
eval = function (http, request)
dump_request(request)
local score = 0
local uri = request.uri
-- Apply all decoding functions on uri (percent-decode, uncomments, etc.)
uri = decode_all(uri)
for _, key in ipairs(keywords) do
if uri:find(key) then
score = score + 4
end
end
if score >= 8 then
haka.alert{
description = string.format("SQLi attack detected with score %d", score),
severity = 'high',
confidence = 'low',
}
http:drop()
end
end
}
6.4.6. Fine-grained analysis¶
All the above rules check the malicious patterns against the whole uri. The purpose of this scenario (sqli-fine-grained.lua) is to leverage the http api in order to check the patterns against only subparts of the http request (query’s argument, list of cookies).
require('httpconfig')
require('httpdecode')
------------------------------------
-- Malicious Patterns
------------------------------------
local keywords = {
'select', 'insert', 'update', 'delete', 'union'
}
------------------------------------
-- A Better Naive Rule ...
------------------------------------
haka.rule{
hook = httplib.events.request,
eval = function (http, request)
dump_request(request)
local uri = request.uri
local ck = request.headers['Cookie']
-- Initialize the score for query's argument and cookies list
-- Could be extended to check patterns in other http fields
local where = {
args = {
-- Split query into list of (param-name, param-value) pairs
value = httplib.uri.split(uri).args,
score = 0
},
cookies = {
-- Split comma-separated cookies into a list of (key, value)
-- pairs
value = httplib.cookies.split(ck),
score = 0
}
}
for k, v in pairs(where) do
if v.value then
-- Loop on each query param | cookie value
for param, value in pairs(v.value) do
local decoded = decode_all(value)
for _, key in ipairs(keywords) do
if decoded:find(key) then
v.score = v.score + 4
end
end
end
end
if v.score >= 8 then
-- Report an alert (more info in alert)
haka.alert{
description = string.format("SQLi attack detected in %s with score %d", k, v.score),
severity = 'high',
confidence = 'medium',
sources = haka.alert.address(http.flow.srcip),
targets = {
haka.alert.address(http.flow.dstip),
haka.alert.service(string.format("tcp/%d", http.flow.dstport), "http")
},
}
http:drop()
return
end
end
end
}
6.4.7. Mutliple rules¶
This script file (sqli-groups.lua) introduces additional malicious patterns and use the rule_group feature to define multiple anti-sqli security rules. Each rule focus on the detection of a particular pattern (sql keywords, sql comments, etc.)
require('httpconfig')
require('httpdecode')
------------------------------------
-- Malicious patterns
------------------------------------
local sql_comments = { '%-%-', '#', '%z', '/%*.-%*/' }
-- Common patterns used in initial attack stage to check for SQLi vulnerabilities
local probing = { "^[\"'`´’‘;]", "[\"'`´’‘;]$" }
local sql_keywords = {
'select', 'insert', 'update', 'delete', 'union',
-- You can extent this list with other sql keywords
}
local sql_functions = {
'ascii', 'char', 'length', 'concat', 'substring',
-- You can extend this list with other sql functions
}
------------------------------------
-- SQLi Rule Group
------------------------------------
-- Define a security rule group related to SQLi attacks
sqli = haka.rule_group{
hook = httplib.events.request,
name = 'sqli',
-- Initialize some values before evaluating any security rule
init = function (http, request)
dump_request(request)
-- Another way to split cookie header value and query's arguments
http.sqli = {
cookies = {
value = request.split_cookies,
score = 0
},
args = {
value = request.split_uri.args,
score = 0
}
}
end,
}
local function check_sqli(patterns, score, trans)
sqli:rule{
eval = function (http, request)
for k, v in pairs(http.sqli) do
if v.value then
for _, val in pairs(v.value) do
for _, f in ipairs(trans) do
val = f(val)
end
for _, pattern in ipairs(patterns) do
if val:find(pattern) then
v.score = v.score + score
end
end
end
if v.score >= 8 then
haka.alert{
description = string.format("SQLi attack detected in %s with score %d", k, v.score),
severity = 'high',
confidence = 'medium',
sources = haka.alert.address(http.flow.srcip),
targets = {
haka.alert.address(http.flow.dstip),
haka.alert.service(string.format("tcp/%d", http.flow.dstport), "http")
},
}
http:drop()
return
end
end
end
end
}
end
-- Generate a security rule for each malicious pattern class
-- (sql_keywords, sql_functions, etc.)
check_sqli(sql_comments, 4, { decode, lower })
check_sqli(probing, 2, { decode, lower })
check_sqli(sql_keywords, 4, { decode, lower, uncomments, nospaces })
check_sqli(sql_functions, 4, { decode, lower, uncomments, nospaces })
Note
Decoding functions are applied depending on the pattern. It is obvious to not apply uncomment function when we are looking for comments.
6.4.8. White list¶
All the defined rules are too general and will therefore raise many alerts. In the example given hereafter, we show how we could skip evaluation of rules if the uri matches some conditions (for instance, do not evaluate anti-sqli rules when the requested resource is equal to /foo/bar/safepage.php). This shows another advantage of using rules group feature.
Note
The check is done after uri normalisation
require('httpconfig')
require('httpdecode')
------------------------------------
-- Malicious patterns
------------------------------------
local sql_comments = { '%-%-', '#', '%z', '/%*.-%*/' }
local probing = { "^[\"'`´’‘;]", "[\"'`´’‘;]$" }
local sql_keywords = {
'select', 'insert', 'update', 'delete', 'union',
-- You can extend this list with other sql keywords
}
local sql_functions = {
'ascii', 'char', 'length', 'concat', 'substring',
-- You can extend this list with other sql functions
}
------------------------------------
-- White List resources
------------------------------------
local safe_resources = {
'/foo/bar/safepage.php', '/action.php',
-- You can extend this list with other white list resources
}
------------------------------------
-- SQLi Rule Group
------------------------------------
sqli = haka.rule_group{
hook = httplib.events.request,
name = 'sqli',
-- Initialisation
init = function (http, request)
dump_request(request)
-- Another way to split cookie header value and query's arguments
http.sqli = {
cookies = {
value = request.split_cookies,
score = 0
},
args = {
value = request.split_uri.args,
score = 0
}
}
end,
-- Continue will be executed after evaluation of
-- each security rule.
-- Here we check the return value ret to decide
-- if we skip the evaluation of the rest of the
-- rule.
continue = function (ret)
return not ret
end
}
------------------------------------
-- SQLi White List Rule
------------------------------------
sqli:rule{
eval = function (http, request)
-- Split uri into subparts and normalize it
local splitted_uri = request.split_uri:normalize()
for _, res in ipairs(safe_resources) do
-- Skip evaluation if the normalized path (without dot-segments)
-- is in the list of safe resources
if splitted_uri.path == res then
haka.log("skip SQLi detection (white list rule)")
return true
end
end
end
}
------------------------------------
-- SQLi Rules
------------------------------------
local function check_sqli(patterns, score, trans)
sqli:rule{
eval = function (http, request)
for k, v in pairs(http.sqli) do
if v.value then
for _, val in pairs(v.value) do
for _, f in ipairs(trans) do
val = f(val)
end
for _, pattern in ipairs(patterns) do
if val:find(pattern) then
v.score = v.score + score
end
end
end
if v.score >= 8 then
-- Report an alert (long format)
haka.alert{
description = string.format("SQLi attack detected in %s with score %d", k, v.score),
severity = 'high',
confidence = 'high',
method = {
description = "SQL Injection Attack",
ref = "cwe-89"
},
sources = haka.alert.address(http.flow.srcip),
targets = {
haka.alert.address(http.flow.dstip),
haka.alert.service(string.format("tcp/%d", http.flow.dstport), "http")
},
}
http:drop()
return
end
end
end
end
}
end
check_sqli(sql_comments, 4, { decode, lower })
check_sqli(probing, 2, { decode, lower })
check_sqli(sql_keywords, 4, { decode, lower, uncomments, nospaces })
check_sqli(sql_functions, 4, { decode, lower, uncomments, nospaces })
6.4.9. Going further¶
As mentioned at the top of this tutorial, our aim is not to block all SQLi attacks. To improve detection rate, one could extend the malicious patterns given throughout these examples.